Resumen
Se realizó un estudio cuasi experimental; se recolectaron 25 cordones umbilicales (UC) en solución de transporte, de los cuales sólo nueve cumplieron con los criterios de inclusión. El tamaño de los cordones fue mayor de 30 cm con un diámetro de ≥1.5 cm; éstos fueron seccionados en 15 fragmentos de aproximadamente 2 cm, y expuestos a diferentes temperaturas (10°C, 22°C y 32°C) durante 6, 12, 24, 48 y 72 horas. Se obtuvo una cantidad de 600 mg de gelatina de Wharton (WJ) de cada fragmento. Se analizó la celularidad y viabilidad con la tinción de azul de tripán. Los fragmentos mantenidos a 10°C presentaron una media de viabilidad de 85,6% ± 6,8 después de 6 horas, con una pérdida de viabilidad a las 72 horas, de 13,6% (p=0,001); a 22ºC la media de viabilidad fue de 84,3% ± 4,2 con una pérdida de viabilidad a las 72 horas de 27.4% (p<0,001); a 32ºC 83,6 % ± 4,6 con una disminución del 60,4% a las 72 horas (p<0,001). Respecto al número de células/mg de WJ, a 22ºC se presentó una media de 167 cel./mg ± 36,5 a las 6 horas, con una pérdida de células a las 72 horas de 112 cel./mg (p=0,001); a 32°C 139 cel./mg ± 73,7, con una pérdida de 98 cel./mg a las 72 horas (p=0,003). La celularidad no fue estadísticamente significativa a 10°C entre los diferentes períodos (p=0,931).
Los datos observados en este estudio indican que la temperatura ideal para la preservación y transporte del tejido de UC es de 10°C, con un tiempo máximo de conservación de 24 horas.
Pre-processing temperature and time: essential factors for cellular performance from Wharton's gelatin
Abstract
A quasi-experimental study was carried out, where 25 umbilical cords (UC) were collected in transport solution of which only nine (9) fulfilled the inclusion criteria. The size of the cords was greater than 30 cm with a diameter of ≥ 1.5 cm; these were cut into 15 fragments of approximately 2 cm and exposed to different temperatures (10 ° C, 22 ° C and 32 ° C) for 6, 12, 24, 48 and 72 hours. It was obtained 600 mgs of Wharton's gelatin (WJ) from each fragment. Cellularity and viability were analyzed with trypan blue staining. The fragments maintained at 10 ° C presented an average viability of 85.6% ± 6.8 at 6 hours, with a loss of viability at 72 hours of 13.6% (p = 0.001). At 22 ° C the viability average was 84.3% ± 4.2 with a loss of viability at 72 hours of 27.4% (p <0.001). At 32ºC 83.6% ± 4.6 with a decrease of 60.4% at 72 hours (p <0.001). With respect to the number of cells / mg of WJ, at 22 ° C an average of 167 cells / mg ± 36.5 was presented at 6 hours with a cell loss at 72 hours of 112 cells / mg (p = 0.001). ). At 32 ° C 139 cel./mg ± 73.7, with a loss of 98 cel./mg at 72 hours (p = 0.003). The cellularity was not statistically significant at 10 ° C between the different times (p = 0.931).
The data found in this study indicate that the ideal temperature for the preservation and transport of UC tissue is 10 ° C, with a maximum conservation time of 24 hours.
Citas
Altanerova, U., Babincova, M., Babinec, P., Benejova, K., Jakubechova, J., Altane- rova, V., y Altaner, C. (2017). Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Inter- national Journal of Nanomedicine, 12, 7923–7936. https://doi.org/10.2147/IJN. S145096
Arbós, A., Nicolau, F., Quetglas, M., Ramis, J. M., Monjo, M., Muncunill, J., y Gayà,A. (2013). Obtención de células madre mesenquimales a partir de cordones um- bilicales procedentes de un programa altruista de donación de sangre de cordón. Inmunología, 32(1), 3–11. https://doi.org/10.1016/j.inmuno.2012.11.002
Ávila-Portillo, L. M., Madero, J. I., López, C., León, M. F., Acosta, L., y Gómez, C. (2006). Fundamentos de criopreservación. Revista Colombiana de Obstetricia y Ginecología, 57(4), 291–300.
Batsali, A. K., Kastrinaki, M. C., Papadaki, H. A., y Pontikoglou, C. (2013). Mes- enchymal stem cells derived from Wharton’s Jelly of the umbilical cord: biological properties and emerging clinical applications. Current Stem Cell Research & Ther- apy, 8(2), 144–155.
Chen, G., Yue, A., Ruan, Z., Yin, Y., Wang, R., Ren, Y., y Zhu, L. (2015). Compar- ison of biological characteristics of mesenchymal stem cells derived from mater- nal-origin placenta and Wharton’s jelly. Stem Cell Research & Therapy, 6. https:// doi.org/10.1186/s13287-015-0219-6
Costa, C., y Fernando, D. (2015). Implementación de protocolos de aislamiento y cultivo de células madre mesenquimales de la gelatina de wharton del cordón um- bilical como base para estudios de regeneración de tejidos. Recuperado de http://www.dspace.espol.edu.ec/handle/123456789/29597
Dulugiac, M., Moldovan, L., y Zarnescu, O. (2015). Comparative studies of mes- enchymal stem cells derived from different cord tissue compartments – The influ- ence of cryopreservation and growth media. Placenta, 36(10), 1192–1203. https://doi.org/10.1016/j.placenta.2015.08.011
Fu, Y.-S., Cheng, Y. C., Lin, M.-Y. A., Cheng, H., Chu, P.-M., Chou, S.-C., y Sung, M. S. (2006). Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Par- kinsonism. Stem Cells (Dayton, Ohio), 24(1), 115–124. https://doi.org/10.1634/ stemcells.2005-0053
Kang, S. K., Shin, I. S., Ko, M. S., Jo, J. Y., y Ra, J. C. (2012). Journey of mesenchy- mal stem cells for homing: Strategies to enhance efficacy and safety of stem cell therapy. Stem Cells International, (2012), e342968. Recuperado de https://doi. org/10.1155/2012/342968
Kobolak, J., Dinnyes, A., Memic, A., Khademhosseini, A., y Mobasheri, A. (s/f). Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-en- gineering of their niche. Methods. Recuperado de https://doi.org/10.1016/j. ymeth.2015.09.016
Muraki, K., Hirose, M., Kotobuki, N., Kato, Y., Machida, H., Takakura, Y., y Ohgushi,
H. (2006). Assessment of viability and osteogenic ability of human mesenchymal stem cells after being stored in suspension for clinical transplantation. Tissue En- gineering, 12(6), 1711–1719. https://doi.org/10.1089/ten.2006.12.1711
Oliver-Vila, I., Coca, M. I., Grau-Vorster, M., Pujals-Fonts, N., Caminal, M., Casa- mayor-Genescà, A., y Vives, J. (2016). Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton’s jelly. Cy- totherapy, 18(1), 25–35. https://doi.org/10.1016/j.jcyt.2015.10.001
Pal, R., Hanwate, M., y Totey, S. M. (2008). Effect of holding time, tempera- ture and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. Journal of Tissue Engineering and Regenerative Medicine, 2(7), 436–444. https://doi. org/10.1002/term.109
Portillo, L. M. Á., Ruiz, D. J. F., García, J. P. A., Arocha, A. G. R., y Mauricio, S. (2015). Comparación de la viabilidad y crecimiento en cultivo de células madre adultas obtenidas de tejido adiposo pre y post congelamiento. Nova, 13(24), 27– 38.
Qiao, C., Xu, W., Zhu, W., Hu, J., Qian, H., Yin, Q., y Chen, Y. (2008). Human mes- enchymal stem cells isolated from the umbilical cord. Cell Biology International, 32(1), 8–15. https://doi.org/10.1016/j.cellbi.2007.08.002
Salehinejad, P., Alitheen, N. B., Ali, A. M., Omar, A. R., Mohit, M., Janzamin, E., y Nematollahi-Mahani, S. N. (2012). Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly. In Vitro Cellular & Developmental Biology - Animal, 48(2), 75–83. https://doi. org/10.1007/s11626-011-9480-x
Seshareddy, K., Troyer, D., & Weiss, M. L. (2008). Method to isolate mesen- chymal-like cells from Wharton’s jelly of umbilical cord. En B.M. C. Biology, 86, 101–119. Academic Press. Recuperado de http://www.sciencedirect.com/sci- ence/article/pii/S0091679X0800006X
Sharma, R. R., Pollock, K., Hubel, A., & McKenna, D. (2014). Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing prac- tices. Transfusion, 54(5), 1418–1437. https://doi.org/10.1111/trf.12421
Stanko, P., Kaiserova, K., Altanerova, V., & Altaner, C. (2014). Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adi- pose tissue, and umbilical cord tissue by gene expression. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 158(3), 373–377. https://doi.org/10.5507/bp.2013.078
Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells
- current trends and future prospective. Bioscience Reports, 35(2). https://doi. org/10.1042/BSR20150025
Umbilical Cord Mesenchymal. (2016, mayo 3). Recuperado de https:// clinicaltrials.gov/ct2/results?term=Umbilical+cord+mesenchymal+&Search=- Search
Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesen- chymal stem cells. Journal of Hematology & Oncology, 5, 19. https://doi. org/10.1186/1756-8722-5-19
Yan, M., Sun, M., Zhou, Y., Wang, W., He, Z., Tang, D., … Li, H. (2013). Conver- sion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to do- pamine neurons mediated by the Lmx1a and neurturin in vitro: potential thera- peutic application for Parkinson’s disease in a rhesus monkey model. PloS One, 8(5), e64000. Recuperado de https://doi.org/10.1371/journal.pone.0064000
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Revista Médica de la Universidad Veracruzana