Exposure to endocrine disruptors and its probable relation with overweight and obesity
PDF (Español (España))

Keywords

Sobrepeso, obesidad, disruptores endocrinos, ftalatos, derivados del estaño, genisteína, bisfenol A.

Abstract

Los Disruptores Endocrinos son sustancias químicas con la capacidad de interferir con la función normal del sistema endocrino causando efectos indeseados para la salud de un organismo intacto y su progenie. La exposición a estos compuestos ha sido relacionada con diversas enfermedades tales como cáncer, infertilidad, cambios en el comportamiento y, en los últimos años, con el incremento acelerado en los índices de sobrepeso y obesidad; de acuerdo con la Organización Mundial de la Salud (OMS) estas enfermedades casi se han triplicado entre 1975 y 2016. A este tipo de Disruptores Endocrinos se les conoce como obesógenos, compuestos químicos que interfieren en los procesos que regulan el metabolismo lipídico, así como en los mecanismos de control de la diferenciación y proliferación de adipocitos.

El objetivo de esta revisión bibliográfica consiste en aportar información actualizada sobre la relación entre la exposición crónica a Disruptores Endocrinos y el incremento, en los últimos años, en los índices de sobrepeso y obesidad. La búsqueda de información se realizó en bases de datos como PUBMED, y en páginas web oficiales
como las de OMS, EFSA, FDA y EPA, entre otras.

Finalmente, la evidencia que existe hasta el momento sugiere la posibilidad de que exista una probable relación entre la exposición a Disruptores Endocrinos y la presencia de sobrepeso y obesidad. Actualmente sólo la Unión Europea, a través de la EFSA, cuenta con una legislación muy estricta para el uso de estos compuestos químicos; desafortunadamente, en nuestro país no existe una ley que los regule, provocando el uso indiscriminado de éstos, en parte por el desconocimiento de sus efectos. Por lo anterior, resulta de gran importancia tomar medidas para disminuir esta exposición y sus efectos, lo que representa un enorme desafío.

Exposure to endocrine disruptors and its probable relation with overweight and obesity

Abstract

Endocrine Disruptors are any chemical substance with the ability to interfere with the normal function of the endocrine system causing unwanted effects on the health of an intact organism and its progeny. Exposure to these compounds has been related to various diseases such as cancer, infertility, behavioral effects and in recent years with the accelerated increase in the rates of overweight and obesity, since according to the World Health Organization (WHO) these diseases have almost tripled from 1975 to 2016, this type of Endocrine Disruptors is known as obesogens, chemical compounds with the ability to interfere in the processes that regulate lipid metabolism, as well as in the control mechanisms in the differentiation and proliferation of adipocytes.

The aim of this bibliographical review is to provide updated information on the relationship between chronic exposure to Endocrine Disruptors and the increase in recent years in the rates of overweight and obesity. The search for information was done in databases such as PUBMED, and official websites such as WHO, EFSA, FDA y EPA, among others.

Finally, the evidence that exists to date suggests the possibility that there is a probable relationship between exposure to Endocrine Disruptors and the presence of overweight and obesity. Currently only the European Union through the EFSA has very strict legislation for the use of these chemical compounds; unfortunately in our country there is no law that regulates them, causing the indiscriminate use of these in part due to ignorance of its effects, which is why it is of great importance to take measures to reduce this exposure and its effects, representing a huge challenge.

https://doi.org/10.25009/rmuv.2023.2.96
PDF (Español (España))

References

Al-Hiyasat, A. S., Darmani, H., & Elbetieha, A. M. (2002). Effects of bisphenol A on adult male mouse fertility. European Journal of Oral Sciences, 110(2), 163–167. https://doi.org/10.1034/j.1600-0722.2002.11201.x

Angle, B. M., Do, R. P., Ponzi, D., Stahlhut, R. W., Drury, B. E., Nagel, S. C., Welshons, W. V., Besch-Williford, C. L., Palanza, P., Parmigiani, S., vom Saal, F. S., & Taylor, J. A. (2013). Metabolic Disruption in Male Mice due to Fetal Exposure to Low but not High Doses of Bisphenol A (BPA): Evidence for Effects on Body Weight, Food Intake, Adipocytes, Leptin, Adiponectin, Insulin and Glucose Regulation. Reproductive Toxicology, 42, 256–268. https://doi.org/10.1016/j.reprotox.2013.07.017

Antizar-Ladislao, B. (2008). Environmental Levels, Toxicity and Human Exposure to Tributyltin (TBT)-Contaminated Marine Environment. A Review. Environment International, 34(2), 292–308. https://doi.org/10.1016/j.envint.2007.09.005

Baillie-Hamilton, P. F. (2002). Chemical Toxins: A Hypothesis to Explain the Global Obesity Epidemic. The Journal of Alternative and Complementary Medicine, 8(2), 185–192. https://doi.org/10.1089/107555302317371479

Barbosa, C. M. D. L., Ferrão, F. M., & Graceli, J. B. (2018). Organotin Compounds Toxicity: Focus on Kidney. Frontiers in Endocrinology, 9, 256. https://doi.org/10.3389/fendo.2018.00256

Bisphenol applications. (2021, 19 marzo). Bisphenol. http://bisphenol-a-europe.org/applications/

Cao, J., Echelberger, R., Liu, M., Sluzas, E., McCaffrey, K., Buckley, B., & Patisaul, H. B. (2015). Soy But Not Bisphenol A (BPA) or the Phytoestrogen Genistin Alters Developmental Weight Gain and Food Intake in Pregnant Rats and their Offspring. Reproductive Toxicology, 58, 282–294. https://doi.org/10.1016/j.reprotox.2015.07.077

Carfi’, M., Croera, C., Ferrario, D., Campi, V., Bowe, G., Pieters, R., & Gribaldo, L. (2008). TBTC Induces Adipocyte Differentiation in Human Bone Marrow Long Term Culture. Toxicology, 249(1), 11–18. https://doi.org/10.1016/j.tox.2008.03.025

Chamorro-García, R., Sahu, M., Abbey, R. J., Laude, J., Pham, N., & Blumberg, B. (2013). Transgenerational Inheritance of Increased Fat Depot Size, Stem Cell Reprogramming, and Hepatic Steatosis Elicited by Prenatal Exposure to the Obesogen Tributyltin in Mice. Environmental Health Perspectives, 121(3), 359–366. https://doi.org/10.1289/ehp.1205701

Chien, L. C., Hung, T. C., Choang, K. Y., Yeh, C. Y., Meng, P. J., Shieh, M. J., & Han, B. C. (2002). Daily Intake of TBT, Cu, Zn, Cd and As For Fishermen in Taiwan. Science of The Total Environment, 285(1–3), 177–185. https://doi.org/10.1016/s0048-9697(01)00916-0

Danciu, C., Soica, C., Csanyi, E., Ambrus, R., Feflea, S., Peev, C., & Dehelean, C. (2012). Changes in the Anti-inflammatory Activity of Soy Isoflavonoid Genistein Versus Genistein Incorporated in Two Types of Cyclodextrin Derivatives. Chemistry Central Journal, 6(1), 1–10. https://doi.org/10.1186/1752-153x-6-58

Darbre, P. D. (2017). Endocrine Disruptors and Obesity. Current Obesity Reports, 6(1), 18–27. https://doi.org/10.1007/s13679-017-0240-4

Endocrine Disruptors. (s. f.). National Institute of Environmental Health Sciences. https://www.niehs.nih.gov/health/topics/agents/endocrine/index.cfm

European Comission. https://ec.europa.eu/commission/presscorner/detail/es/IP_16_2152

Estructura química del tributil estaño. (s. f.). MERCK MILLIPORE. http://www.merckmillipore.com/MX/es/product/Tributyltin-hydride,MDA_CHEM-814109?ReferrerURL=https%3A%2F%2Fwww.google.com.mx-%2F

Estructura química del trifenil estaño, FISHER SCIENTIFIC, recuperado de: https://www.fishersci.es/shop/products/triphenyltin-chloride-95-thermo-scientific-1/11369085

García, J. A., Gallego, C., & Font, G. (2012). Toxicidad de Bisfenol A: Revisión. Revista Toxicología, 32(1), 144–160.

Giusti, R. M. (1995). Diethylstilbestrol Revisited: A Review of the Long-Term Health Effects. Annals of Internal Medicine, 122(10), 778–788. https://doi.org/10.7326/0003-4819-122-10-199505150-00008

Hao, M., Ding, L., Xuan, L., Wang, T., Li, M., Zhao, Z., Lu, J., Xu, Y., Chen, Y., Wang, W., Bi, Y., Xu, M., & Ning, G. (2017). Urinary Bisphenol A Concentration and the Risk of Central Obesity in Chinese Adults: A Prospective Study. Journal of Diabetes, 10(6), 442–448. https://doi.org/10.1111/1753-0407.12531

Hatch, E. E., Troisi, R., Palmer, J. R., Wise, L. A., Titus, L., Strohsnitter, W. C., Ricker, W., Hyer, M., & Hoover, R. N. (2015). Prenatal Diethylstilbestrol Exposure and Risk of Obesity in Adult Women. Journal of Developmental Origins of Health and Disease, 6(3), 201–207. https://doi.org/10.1017/s2040174415000033

Heindel, J. J., Blumberg, B., Cave, M., Machtinger, R., Mantovani, A., Mendez, M. A., Nadal, A., Palanza, P., Panzica, G., Sargis, R., Vandenberg, L. N., & vom Saal, F. (2017). Metabolism Disrupting Chemicals and Metabolic Disorders. Reproductive Toxicology, 68, 3–33. https://doi.org/10.1016/j.reprotox.2016.10.001

Herbst, A. L., Ulfelder, H., & Poskanzer, D. C. (1971). Adenocarcinoma of the Vagina. New England Journal of Medicine, 284(16), 878–881. https://doi.org/10.1056/nejm197104222841604

Ho, S. M., Tang, W. Y., Belmonte De Frausto, J., & Prins, G. S. (2006). Developmental Exposure to Estradiol and Bisphenol A Increases Susceptibility to Prostate Carcinogenesis and Epigenetically Regulates Phosphodiesterase Type 4 Variant 4. Cancer Research, 66(11), 5624–5632. https://doi.org/10.1158/0008-5472.can-06-0516

Hong, S. H., Sung, Y. A., Hong, Y. S., Ha, E., Jeong, K., Chung, H., & Lee, H. (2016). Urinary bisphenol A is Associated with Insulin Resistance and Obesity in Reproductive-aged Women. Clinical Endocrinology, 86(4), 506–512. https://doi.org/10.1111/cen.13270

Jensen, E. T., & Longnecker, M. P. (2014). Pharmacologic Sex Hormones in Pregnancy in Relation to Offspring Obesity. Obesity, 22(11), 2406–2412. https://doi.org/10.1002/oby.20778

Kanayama, T., Kobayashi, N., Mamiya, S., Nakanishi, T., & Nishikawa, J. I. (2004). Organotin Compounds Promote Adipocyte Differentiation as Agonists of the Peroxisome Proliferator-Activated Receptor γ/Retinoid X Receptor Pathway. Molecular Pharmacology, 67(3), 766–774. https://doi.org/10.1124/mol.104.008409

Lanthier, N., & Leclercq, I. A. (2014). Adipose Tissues as Endocrine Target Organs. Best Practice & Research Clinical Gastroenterology, 28(4), 545–558. https://doi.org/10.1016/j.bpg.2014.07.002

Laronda, M. M., Unno, K., Butler, L. M., & Kurita, T. (2012). The Development of Cervical and Vaginal Adenosis as a Result of Diethylstilbestrol Exposure in Utero. Differentiation, 84(3), 252–260. https://doi.org/10.1016/j.diff.2012.05.004

Lind, P. M., Zethelius, B., & Lind, L. (2012). Circulating Levels of Phthalate Metabolites are Associated With Prevalent Diabetes in the Elderly. Diabetes Care, 35(7), 1519–1524. https://doi.org/10.2337/dc11-2396

Matthiessen, P., & Gibbs, P. E. (1998). Critical Appraisal of the Evidence for Tributyltin-mediated Endocrine Disruption in Mollusks. Environmental Toxicology and Chemistry, 17(1), 37–43. https://doi.org/10.1002/etc.5620170106

Menale, C., Piccolo, M. T., Cirillo, G., Calogero, R. A., Papparella, A., Mita, L., Giudice, E. M. D., Diano, N., Crispi, S., & Mita, D. G. (2015). Bisphenol A Effects on Gene Expression in Adipocytes from Children: Association with Metabolic Disorders. Journal of Molecular Endocrinology, 54(3), 289–303. https://doi.org/10.1530/jme-14-0282

Michałowicz, J. (2014). Bisphenol A – Sources, Toxicity and Biotransformation. Environmental Toxicology and Pharmacology, 37(2), 738–758. https://doi.org/10.1016/j.etap.2014.02.003

Mnif, W., Hassine, A. I. H., Bouaziz, A., Bartegi, A., Thomas, O., & Roig, B. (2011). Effect of Endocrine Disruptor Pesticides: A Review. International Journal of Environmental Research and Public Health, 8(6), 2265–2303. https://doi.org/10.3390/ijerph8062265

Mollo Tangara, J. C., & Montaño Cabrera, L. A. (2013). Disruptores endocrinos en el plástico (Bisfenol A y Ftalatos). Scientifica, 11(1), 19–22.

Navarro, R., & Reiecke, H. (2013). Plastificantes de todo tipo. Revista de Plásticos Modernos: Ciencia y Tecnología de Polímeros, 103(664), 14–19.

Nielsen, J. B., & Strand, J. (2002). Butyltin Compounds in Human Liver. Environmental Research, 88(2), 129–133. https://doi.org/10.1006/enrs.2001.4321

Obesidad y sobrepeso. (2021, 9 junio). Organización Mundial de la Salud. https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight

Oehlmann, J., Bauer, B., Minchin, D., Schulte-Oehlmann, U., Fioroni, P., & Markert, B. (1998). Imposex in Nucella Lapillus and Intersex in Littorina Littorea: Interspecific Comparison of Two TBT-induced Effects and their Geographical Uniformity. Hydrobiologia, 378(1/3), 199–213. https://doi.org/10.1023/a:1003218411850

Oktar, S., Sungur, S., Okur, R., Yilmaz, N., Ustun, I., & Gokce, C. (2017). The Relationship Between Phthalates and Obesity: Serum and Urine Concentrations of Phthalates. Minerva Endocrinology, 42(1), 46–51. https://doi.org/10.23736/s0391-1977.16.02295-1

Ørgaard, A., & Jensen, L. (2008). The Effects of Soy Isoflavones on Obesity. Experimental Biology and Medicine, 233(9), 1066–1080. https://doi.org/10.3181/0712-mr-347

Penza, M., Montani, C., Romani, A., Vignolini, P., Pampaloni, B., Tanini, A., Brandi, M. L., Alonso-Magdalena, P., Nadal, A., Ottobrini, L., Parolini, O., Bignotti, E., Calza, S., Maggi, A., Grigolato, P. G., & di Lorenzo, D. (2006). Genistein Affects Adipose Tissue Deposition in a Dose-Dependent and Gender-Specific Manner. Endocrinology, 147(12), 5740–5751. https://doi.org/10.1210/en.2006-0365

Plásticos – Situación en 2020. (2020). Plastics Europe. https://plasticseurope.org/es/wp-ontent/uploads/sites/4/2021/11/ES_Plastics_the_facts-WEB-2020_May21_final_updatedJuly2021.pdf

Quagliariello, V., Rossetti, S., Cavaliere, C., di Palo, R., Lamantia, E., Castaldo, L., Nocerino, F., Ametrano, G., Cappuccio, F., Malzone, G., Montanari, M., Vanacore, D., Romano, F. J., Piscitelli, R., Iovane, G., Pepe, M. F., Berretta, M., D’Aniello, C., Perdonà, S., Muto, P., Botti, G., Ciliberto, G., Veneziani, B. M., De Falco, F., Maiolino, P., Caraglia, M., Montella, M., Iaffaioli, R. V., Facchini, G. (2017). Correction: Metabolic Syndrome, Endocrine Disruptors and Prostate Cancer Associations: Biochemical and Pathophysiological Evidences. Oncotarget, 8(37), 62816. https://doi.org/10.18632/oncotarget.20631

Rantakokko, P., Main, K. M., Wohlfart-Veje, C., Kiviranta, H., Airaksinen, R., Vartiainen, T., Skakkebæk, N. E., Toppari, J., & Virtanen, H. E. (2014). Association of Placenta Organotin Concentrations with Growth and Ponderal Index in 110 Newborn Boys From Finland During the First 18 Months of Life: a Cohort Study. Environmental Health, 13(1), 45. https://doi.org/10.1186/1476-069x-13-45

Richter, C. A., Birnbaum, L. S., Farabollini, F., Newbold, R. R., Rubin, B. S., Talsness, C. E., Vandenbergh, J. G., Walser-Kuntz, D. R., & vom Saal, F. S. (2007). In Vivo Effects of Bisphenol A in Laboratory Rodent Studies. Reproductive Toxicology, 24(2), 199–224. https://doi.org/10.1016/j.reprotox.2007.06.004

Rochester, J. R. (2013). Bisphenol A and Human Health: A Review of the Literature. Reproductive Toxicology, 42, 132–155. https://doi.org/10.1016/j.reprotox.2013.08.008

Troisi, R., Titus, L., Hatch, E. E., Palmer, J. R., Huo, D., Strohsnitter, W. C., Adam, E., Ricker, W., Hyer, M., & Hoover, R. N. (2017). A Prospective Cohort Study of Prenatal Diethylstilbestrol Exposure and Cardiovascular Disease Risk. The Journal of Clinical Endocrinology & Metabolism, 103(1), 206–212. https://doi.org/10.1210/jc.2017-01940

Vandenberg, L. N. (2014). Low-dose Effects of Hormones and Endocrine Disruptors. Vitamins & Hormones, 94, 129–165. https://doi.org/10.1016/b978-0-12-800095-3.00005-5

Welshons, W. V., Nagel, S. C., & vom Saal, F. S. (2006). Large Effects from Small Exposures. III. Endocrine Mechanisms Mediating Effects of Bisphenol A at Levels of Human Exposure. Endocrinology, 147(6), 56–69. https://doi.org/10.1210/en.2005-1159

Zanella, I., Marrazzo, E., Biasiotto, G., Penza, M., Romani, A., Vignolini, P., Caimi, L., & di Lorenzo, D. (2014). Soy and the Soy Isoflavone Genistein Promote Adipose Tissue Development in Male Mice on a Low-fat Diet. European Journal of Nutrition, 54(7), 1095–1107. https://doi.org/10.1007/s00394-014-0786-9

Downloads

Download data is not yet available.